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Abstract

The tight orders for the Kolmogorov and adaptive (7, €, §)-widths of the Sobolev spaces W7, equipped with a Gaussian

measure in the L;-norm and L «-norm are determined by the method of discretization, which is based on reducing the calculation of the
(n, ¢, 8)-widths of the Sobolev space to the calculation of (7, €, &)-widths of finite-dimensional set equipped with the Gaussian measure.
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In this paper, as the continuance of Maiorov’s
recent work(!), we investigate the distribution of val-
ues of the approximation functional and the Kol-
mogorov and adaptive probabilistic (n, €, 8 )-widths
defined on Sobolev spaces equipped with a Gaussian
measure. First we recall some definitions.

Let X be a separable Banach space and W some
compact set in X. Let Y be a subspace of X and Y”
=Y X+ XY the product of n copies of Y. We de-
note the elements of Y” by y = (y1, ***, y,), where
v:€Y, i=1, -, n. Consider the functional defined
on the product W X Y™,

e(z,y) = inf |z - ul x,
uély
i. e. the error in the best approximation of the ele-

ment z from the linear space I, =spaniy;, ", y,! of
*y ¥, . Consider the problem of ap-
proximation of the set W by a subspace of type I,, y
€Y". We call

d(W,Y",X) = inf supe(x,y) (1)
yeY"' €W

the Kolmogorov n-width. It follows Traub et a
that the problem of computing »n-widths is closely re-
lated to the information-based complexity of approxi-
mation. We assume that the set W is equipped with a
Borel field of subsets B(W), and let i be a probabil-
ity measure defined on B(W). We will also consider
in X the manifold of all n-dimensional subspaces to
which a measure was introduced in the following
way. Let Y be some subspace of X equipped with the

the elements yq, -

1. [2]

Borel field B(Y) and let v* be a probability measure
on B(Y").

Set Y'=Y X+ X Y. Let B(Y") be the mini-
mal o-field containing B(Y) X .-+ X B(Y). Then
there exists a unique probability measure v on
B(Y"), such that

v(Ap X - X A,) = v(Ap)v(A,)  (2)
for all Ay, ", A, € B(Y). For a functional g(y),
defined on Y”, one may introduce the function of dis-
tribution as follows:

infg(y)=sup inf g(y),
IEY: v(G)<e z€Y'\ G

e€[0,1]. (3)

Let y = (y1, =", v,) € Y” be a fixed element.
Define the &-distance of the space W from the sub-
space , by

es(W,y)= inf sup e(x,y)= supe(x,y).

QK zew\ @ B
(4)
We call
de,B[(W9#),(Yn5 V),X:' = infe,;(W,y)
.vC-Y:'
= inf supe(z,y) (5)
_VEY: A

the Kolmogorov (7, ¢, 8 )-width of the space (W, u)
relative to the manifold (Y”, v) in the X-norm. As
the classical n-width, probabilistic width quantifies
the error of the best approximation. However, in the
classical case, the error is defined by their worst case
with respect to a given class. So it does not reflect the
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behavior of the error functional for the best approxi-
mation in the whole space. In other words, it does
not give information about the measure of the ele-
ments in the class that can be approximated to some
degree, in particular, the measure of the elements on
which the supremum is attained with respect to the
order. In the probabilistic approach, the error is de-
fined by the worst case performance on a subset of
measure at least 1 — &, so d,,5 can be understood as
the p-distribution of the best approximation on all
subsets of W which reflects the intrinsic structure of
the class. Therefore, a probabilistic case setting, as
compared with the worst case setting, allows one to
give deeper analysis of the smoothness and approxi-
mation for the function class.

The results concerning the calculation of n-
widths of the smooth function classes equipped with
some given measure are contained in Refs. [1~6].

Based on the Kolmogorov (7, e, 8 )-widths one
can construct the function of distribution of values of
the functional e (x, y) in investigating the approxi-
mation of the whole set W. Such an approximation
method is called nonadaptive. While in application it
is necessary to solve the problem of approximation of
any individual element by choosing the best subspace
from some set of subspaces. Such methods will be
called adaptive. We call

d‘fa[(W,y),(Y",v),X] = sup infe(x,y),

z€ W,

5 ¥€ Y:

(6)
the adaptive (n, e, 8)-width of the space (W, p),
which relates to the manifold ( Y”, v) in the X-
norm. From the inequality

sup infe(x,y) < inf
z€EW\Q ye v

sup e(x,y),
yev’ 2€W\Q

where Q is any subset of W with measure p( Q)<<
&, one can derive that the following relation

d‘:’ia[(W,,U);(Yn9 V)9 X]

gds,é‘[(W9/1)9(Y"9V)sX] (7)
between the Kolmogorov and adaptive (n, e, 8)-
widths holds.

For 1< p<C o, denote by L, the Banach space
consisting of all 2x-periodic measurable functions with
the finite norm

2n 1/p
Hxllp:(Jolx(t)I"dt , 1< p < oo,

and with the usual change to sup when p =.

Considering the Hilbert space L, with inner
product

1 21(
(xz, ) :2_11'_[0 z(t)y(e)dt, x=,y€L,,

and supposing x has the Fourier series

z(t) = Z cen(t), e (t) = explikt),

k=-x

we define the Weil r-fractional derivative (r €ER) as

()= Z (ik) cpexp(ikt),
k€ 3\ [0]
(ik)"= k| exp §signr

1 Main results

Denote by W, r >0, the well-known Sobolev
space consisting of all functions £ € L, with mean

2
value ¢ =0 and semi-norm || x || W (7, £y,
2

which is a Hilbert space with the inner product de-
fined by

(z, 3 1=(z", 5.

Equip W7, with a zero mean Gaussian measure p
whose correlation operator C, has eigenfunctions e; =
exp(ik (*)) and eigenvalues A, =alk|™*, a>0,
s>1, i.e.

Cer=Aier, EEZN\ {0}.

Let y,, £ = *1, £2, -+, be an orthonormal
system in the space W}, o, = {(C,n, ), and 9 be
any Borel subset in R™ """ 1(m >n), then the mea-
sure of the cylindrical subsets G in the space W7, giv-
en by

G =|z€ W;:<I,y§l_r)>1,"', <I,y(—r)>1 c @}

m

is equal to

£(G) = [T 2(xas) 2

. J@exp - %Zaglui) du, -du,,. (8)

Let Y" = L, X -+ X L, be the product of n
copies of the space L, = W and let v = pg X =+ X g

be the Gaussian measure on Y”. Considering the ap-
proximation functional on W3 X Y

e(z,y) = inf lz—ull L (9)

the Kolmogorov and adaptive (#, &, §)-widths are
defined on the basis of this functional.

It is known that if » >max{0,1/2—-1/q!, then
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the space W, can be imbedded into the space L,, 1<
gs<oo(see Ref. [7]). Let ¢, ¢;, :=0,1,, be
positive constants depending only on the parameters
7, ¢, a and s. For two positive functions a (y) and
b(y), yE 9, the notation a(y)}X b(y) or a(y)K
b(y) means that there exist constants ¢y, ¢2, Or ¢
such that c;<Na(y)/b6(y)<<cyor a(y)<<cb(y) for
all y€ 9.

The main results of calculating the Kolmogorov
and adaptive (n, €, 8 )-widths of the Sobolev space

W', equipped with a Gaussian measure in the L-

norm and L «-norm are as follows.

Theorem 1. Let r >1/2, g=1 or o, s>1,
a>0. Thenforall n=0,1, -, §€(0,1/2], e€
[0,1-2""], the Kolmogorov (n, e, 8 )-width of the
space ( W2, ) related to the manifold (Y”, v) in the
L, norm has the asymptotic value

1+/(1/2)In(1/68)

nr+(s—1)/2 .

de,B[(W;y/l),(Y"’ V)9Lq]x

Theorem 2. Under the conditions of Theorem 1
forall §€(0,1/2],¢€[68,1—-2""], where 8§ =
min{ 8,2 "}, the adaptive (n, e, & )-width has the
asymptotic value

1+ /(1/a)In(1/8)

nr+(5—1)/2 ‘

d:"ia[(W;, ﬂ)’(Yny V)’Lq]x

Remark 1. In the case 1< g< o0, Theorems 1
and 2 have been investigated by Maiorov'!?, and he
has conjectured that it is possible to generalize his re-
sult to the case ¢ =1, and ¢ = % . In this paper, we
will prove the conjecture, and determine the tight or-

der of the Kolmogorov (n, ¢, 8)-widths d,, [ ( W7,
#), (Y*, v), L,] and adaptive (n, e, §)-widths
d (W5, 1), (Y",v),L,] in the case ¢ =1 and

q = 00,
2 Proofs of the main results

Let l;" be the m-dimensional space of vectors
x=(xq, ", T, ) ER™ with the usual norm. Denote
by By (p)=1x€11}: | z |l ,<p! the ball with ra-
dius p in the space [;. If p =1, then set B) =
B;"(l). Consider the standard Gaussian measure 7,,
on R™, which is defined by

Yu(G) = (21()_'”/2JGexp

_1
2«

i

m
2
Ii)dxl"'dxm,
=1

where G is any Borel set in R™. Obviously 7,, (R™)
=1. Denote by Y” the space of all possible collections
) yn)’ inRm’ t
=1,'+, n, and equip Y" with measure 7,,, = ¥m X
X Y,

that consist of n vectors y= (y1, ot

Following Refs. [4] and [9], consider the two-
sided sequence {A,(*)} :; _ o« Of continuous functions
on the lineR. If 221, let 1,(2*)=1 and A,(u) =0
for u & [2#71,2%*!], and extend A, (*) linearly to
the whole of R; if #<C1 let 4,(*)=24_,(+), choose
the function Ao(*) so that for all « €R

E Ak(-):l_

kEZ

Construct a sequence of multiplicative operators

which acts on the space Lo. If x(¢)= che,,(t),
n€®

then set
(M) (£)= D 2 (n)cpe,(2),
n€Z
kEZ.

e, (t):=¢™,

For £ > 1, denote by A; the set of integers
2871, 2% and for A< -1, let Ay = — Ay,
and Ap={—1,0,1}. We consider the following se-
quence of projection operators acting on L o :

(Pex)(t)= D) cren(t), REZ.
n€a,

Let m, = card A;, i.e. m, = 3.2171 4+ 1 for
£#0 and m=3. Denote by 7"¢(A,) the m,-dimen-
sional space of all trigonometric polynomials of the
form

y(t) = Dlcren(t).

nGAk
It forms a Banach space 7.*(A,;) consisting of the ele-

ments of 7"¢(A,) with the norm
Iy |l Feia,) =, maX [y(Ce) ], t,=2xl/m,.
@ s my,

Let ", denote the m-dimensional normed space
consisting of vectors x = (xy, ***, z,, ) € R™ with
norm

“x“oozltgixlx,-l.

sism

Now we establish an auxiliary discretization the-
orem that reduces the upper estimate of the (=, ¢,
8)-width d,, s[ (W}, ), (Y*,v), L] to the corre-
sponding finite-dimensional problem for the (=, ¢,

8)-width d, , [(R™, v, ), (R™™, 7, . ,I"5)].
[ 30 ] k Rk

Theorem 3. Letp = r + (s —1)/2,¢, 0 €
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[0,1], £ €Z and let the four sequences of numbers

{my =321 mo=3}, {m), {exl, and |81
satisfy 0<Cn,<<my, Enkgn, Zekge, Zé‘k<5
Yy ieg )

respectively. Then for the Kolmogorov (1, e, ¢ )-
widths of the space ( W}, u) relative to manifold
(Y",v) in the L »-norm, we have

de,s [ (W), 1), (Y, v), L]

Seo 23 my o LR™, 7,0, (R, D],

Proof.
operator vy (t) assigned to a vector (yq, -

Introduce the interpolation polynomial
, y"u) in
I such that y(z;) =y, =1,
the polynomials in 74 (A,)

e (t) = Zen(t - 1),

n€A,

, my, and consider

I =1, my.

Obviously these polynomials are orthogonal in L.
For any function x € W7, we have
(P.D'z)(t))=(D'z, @), L=1,,my

Let Ok = <C#§ij, quj> s J=
is the correlation operator of measure y2. Then

1, -+, my, where C,

1-5

Ok,1 = 777 = op X my

From the definition of operator C,, it follows that
¢ = (Con> o) =a e
I=1

=q D17 °X

lea,

S| <§0kl’ €1> |

For any k €Z, let G,: CR™" and Q,: CR™ be
sets such that

T (G =1 - 7, (Q) <8,

and for (n,, €, 8; )-width of the space R™*
de s [(R™, 7, ), (R™*, 7, , ), 1]
=inf sup elz,y,l%). (10)

YEG R, N\ Q

For any % and : =1, ---, m,, define a functional

on L«
fkt(x) = <”;1/2DVI’ 9%'> -
Obviously, we have
fi(@) =0, VADPR) (1))

Construct the operators from the space Lo to
R™
Fi(z) = (fulz),

and construct the subset of W”

fkmk(x))

Q={z€EW :Fz€Q,l.

Analogously, construct an operator from Y™ to
R™™
y= (31072 3,) = By
= (S (3))y

and consider the subset in Y™ given by

M=l

Gy = ly € Yh: @y € G,
(for k=0, set Qo= 10} and Go=J.) Let
G = ﬂkesz, Q= Ukesz'

Then v(G)=1—€, and p£(Q)<S.

For any element 2 € L, by Lemma 6 in Ref.

[4] (see also Ref. [9]), we have 2 = ZAkz in the
3]
case 2 € L » and

e(Akx!Aky’LOO)
<com, e(D'Pyx,
By virtue of the relation
e(D'Piz, D'Pyy, Tt (&) = Y ore(Fix, Gpy, 17),
(12)

D'Pyy, T (Ap)).  (11)

with ¢; = <C#qol, @)y L=1,, m,, it is clear that
01="" =0, , and
61 =a 2 In| "t @1, en) |
nEZN (0]
=a E [n| X amk
nGA

v /cr_k = m, . Using the defini-
tions of the sets G and Q, we obtain from Lemma 6

Hence we get m,

in Refs. [4] and (10)~(12)
inf sup e(x,y, L)
Y€C rew
cozmk inf  sup e(Fur, Dy, I*)
3 ; YEC ceW N
Lcop,m,” inf  sup e(x’,y',l%)
1 ; V€O rew @
Cozmk e 5[(R ’y ) (Rkk”ymn)’lt;’l]’
r€g Kk
(13)
from which and the definitions of G, T, {G,1,

{ Tp1, we estimate continuously, and obtain

€8[(Wa’#) (Y"’V) Loo]
coEmk oo, [(R™, v, ), (R, 7, ), 1],
The proof of Theorem 3 is complete.

Theorem 4. If m >n, 0, ¢, §€[0,1], w: =
r+(s+1)/2, then

d“ (W, ), (Y",»), Ly]
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> Cm_wd:"ig[(Rm’ ym)) (Rmn’ Ymn)’ ZT]

Proof. Without loss of generality, we prove only
for the case e =0. Let m >0 be any integer, and let
s;(¢) = 5;(¢ =2r(l - 1)/ m), [l =1,",m,

where
A (m/ ¥ Ra/m—t), 0<:<2n/m,
al0) =1, 2n/m < t<2r.
Then for all £, the quantities o, = (C,D ™ *s;, 5;) =
(C,,D “7s;, D™ 7s;) have the estimate
o, = m—(2r+s+l)’
for {=1,:+, m. We define a functional on L,
filz) = o7z, 5, (14)
and let
(Zy)J_: lz € Lo {z,u) =0, Yu€l}.
By the Nikolskii’ s Duality Theorem (Pages 13~ 15
in Ref. [10]),
ez, y,L)=supll (z,2) | 12€ (1), = | L SO

VyeY".

Consider in R™ the subspace
(zy) = {u = (ul’"" um) € R™

: ‘_Zum-) eyt as)

1, {=1,-+, m, and the sup-
ports of the s, are disjoint, it follows from (15) that

e(x,y,Ly) >sup{ l 2141(:5,5[) | tu € (1)1,

Since || 5; | o =

lullw<1)
=gl/25up{ ' Zm)ulxl’ u € (zy)J_s
=1

lullw<1}
:ol/ze(x',yl,lrln),
“wx,)and ;= fi{x), [=1, ",
m defined by (14) and Z; is the orthogonal comple-
ment of (Zy)L. Let the set Q C W) satisfy £ ( Q)<<
0, and

where x" = (x4,

d‘g’ia[(W;’ ,U))(Yn’ V)’ Ll]
= sup infe(x,y,L;). (16)
zew’z\o ye Yy

We construct the operator from L; to R™
F(z) = (filz), -, fu(z))
and let @ = FQ. So from the definition of the mea-
sure p, 7, (Q") = (Q)<J, and by the definitions

of the operators F, it follows that F(W, \ Q) =R"
\ Q. Therefore, we have

sup infe(x,y,L,)
€W N\QIEY
=>m™® sup infe(zx’,y,IT)
ZER"\Q yeR™
>m_wd‘g’ia[(Rm,ym)’(Rm")}Imn))lrln]!

Theorem 4 is proved.
Now we prove our main results.

Proof. (for Theorems 1 and 2). By the inequal-
ity (7), it is sufficient to prove the upper estimate for
Theorem 1 and the lower estimate for Theorem 2.
Assume that n =2%, my = 3.k -1y 1, and

. :{0, k| #k,

k e/2, otherwise,

_{mk) |k|<k/—1,
T 2Kk kIR -1,
5={0' / [kI<E -1,
FUs2Y R, kIR -1,

Obviously, e, n,, and & satisfy
Eekze, an<<nand Z5k<<6.
rez k== k= o
Therefore by Theorem 3 in this paper and Theorem 5
in Ref. [1], we can obtain

de,a[(W;’ #))(Yn’ V)’ LOO:]

<o 25 myfd, 5 L(R™,7,), (R™*, 7, ), 1]

k=-

< D127* J(1 + 1/nIn(1/8; ) In(my — nz)).

k>R
Substituting the values of m;, n,, and &, into the
above formula, we estimate countinuosly,

Em;‘a J + 1/ In(1/8:)In(my, — ny)

<<22_Pk(ln(mk - m))Y?
>k
+ Z(l/nkln(l/ﬁk)ln( my — le))l/z

K2k = BV 4 a7t F20er D
[k = B +1n(1/8))(k — &) ]2

Substituting £ — %" by % in the sums, we finally
obtain

de,a[(WrZ’,U)’(Yn’ V)’ Loo:l
K27 4 RGP VDY [10(1]5)
<n 1+ J1/nIn(1/8)).

The upper estimate of Theorem 1 is completed. Now
we proceed the lower estimate of Theorem 2. By
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virtue of Theorem 4 in this paper and Theorem 6 in
Ref. [1], we have

d:fia[(W;;#)9(Yn’ V)9 Ll]
> m T gl LR )y (R™ Vo) 17]

> o UTETD [N T In(1/8)
> n_(r+(s-1)/2)(1 + J1/nIn(1/8)),

for m =2n. Now we obtain the lower bound of The-
orem 2.
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